1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
| #include <array> #include <iostream> #include <queue> #include <vector> using namespace std; const int N = 1e4 + 5; const int INF = 0x7f7f7f7f; struct Graph { struct Node { int v, w, nxt; }; std::vector<int> head; std::vector<Node> edge; Graph() { } Graph(int n) : head(n + 1, -1){}; void resize(int n) { head.assign(n + 1, -1); } void add(int u, int v, int w) { if (head.size() < u) { head.reserve(u * 2); } edge.emplace_back(Node{v, w, head[u]}); head[u] = edge.size() - 1; }
void add_flow(int u, int v, int w) { add(u, v, w); add(v, u, 0); } }; namespace NetworkFlow { std::vector<int> level; bool bfs(int S, int T, const Graph &G) { level.assign(G.head.size(), 0); level[S] = 1; std::queue<int> q; q.push(S); while (!q.empty()) { int now = q.front(); q.pop(); for (int i = G.head[now]; ~i; i = G.edge[i].nxt) { int v = G.edge[i].v; if (!level[v] && G.edge[i].w) { level[v] = level[now] + 1; q.push(v); } } } return level[T]; } std::vector<int> cur; int dfs(int x, int T, int maxflow, Graph &G) { if (x == T) { return maxflow; } int res = 0; for (int i = cur[x]; ~i && res < maxflow; i = G.edge[i].nxt) { cur[x] = i; int v = G.edge[i].v; if (G.edge[i].w && level[v] == level[x] + 1) { int x = dfs(v, T, std::min(G.edge[i].w, maxflow - res), G); if (x) { G.edge[i].w -= x; G.edge[i ^ 1].w += x; res += x; } } } if (res < maxflow) { level[x] = -1; } return res; } int MaxFlow(const int S, const int T, const Graph &G) { cur.resize(G.head.size()); level.resize(G.head.size()); Graph tmpG = G; int res = 0; while (bfs(S, T, tmpG)) { cur.assign(tmpG.head.begin(), tmpG.head.end()); int x; while (x = dfs(S, T, INF, tmpG)) { res += x; } } return res; } } int S, T; Graph G; array<int, N * 20> id, col; int idcnt; namespace SegmentTree { using namespace NetworkFlow; #define ls(x) (x * 2) #define rs(x) (x * 2 + 1) void build(int rt, int l, int r) { if (l == r) { id[rt] = l; G.add_flow(l, T, 1); col[rt] = l; return; } id[rt] = col[rt] = ++idcnt; int mid = (l + r) / 2; build(ls(rt), l, mid); build(rs(rt), mid + 1, r); G.add_flow(col[rt], col[ls(rt)], INF); G.add_flow(col[rt], col[rs(rt)], INF); } void update(int rt, int l, int r, int L, int R, int v) { if (L <= l && r <= R) { if (v) { id[rt] = col[rt]; } else { id[rt] = -1; } return; } int mid = (l + r) / 2; id[rt] = ++idcnt; if (L <= mid) { update(ls(rt), l, mid, L, R, v); } if (mid < R) { update(rs(rt), mid + 1, r, L, R, v); } if (id[ls(rt)] != -1) { G.add_flow(id[rt], id[ls(rt)], INF); } if (id[rs(rt)] != -1) { G.add_flow(id[rt], id[rs(rt)], INF); } } #undef ls #undef rs } int n, q; vector<pair<int, int>> st[N], ed[N]; int main() { cin >> n >> q; G.resize(n * 80); S = idcnt = n + 1; T = S + 1; for (int i = 1; i <= q; i++) { int x1, y1, x2, y2; cin >> x1 >> y1 >> x2 >> y2; st[x1].emplace_back(make_pair(y1, y2)); ed[x2 + 1].emplace_back(make_pair(y1, y2)); } SegmentTree::build(1, 1, n); for (int i = 1; i <= n; i++) { for (auto v : ed[i]) { SegmentTree::update(1, 1, n, v.first, v.second, 1); } for (auto v : st[i]) { SegmentTree::update(1, 1, n, v.first, v.second, 0); } if (id[1] != -1) G.add_flow(S, id[1], 1); } cout << NetworkFlow::MaxFlow(S, T, G); return 0; }
|