很久之前的东西
2021.04.20 模拟赛
越来越菜
T1 越野赛车问题
题面
矩阵乘写挂也有五十()
虽然有线段树分治+并查集的解法,不过个人感觉DDP比较好想
其实题目就是说一个树每个边在 l i l_i l i 出现 r i r_i r i 消失,时刻 v v v 的直径
DDP的话
设 d p x , 1 dp_{x,1} d p x , 1 表示 x x x 的子树内直径长度,d p x , 0 dp_{x,0} d p x , 0 表示起点为 x x x 的最长链
d p x , 1 = max max y ∈ s o n ( x ) d p y , 1 , max y , z ∈ s o n ( x ) d p y , 0 + d p z , 0 dp_{x,1}=\max\\{\max\limits_{y\in son(x)}dp_{y,1},\max\limits_{y,z \in son(x)}dp_{y,0}+dp_{z,0}\\} d p x , 1 = max y ∈ s o n ( x ) max d p y , 1 , y , z ∈ s o n ( x ) max d p y , 0 + d p z , 0
d p x , 0 = max y ∈ s o n ( x ) d p y , 0 + 1 dp_{x,0}=\max\limits_{y\in son(x)}\\{dp_{y,0}\\}+1 d p x , 0 = y ∈ s o n ( x ) max d p y , 0 + 1
DDP套路,设
g x , 0 = max y ∈ l i g h t ( x ) d p y , 0 g_{x,0}=\max\limits_{y\in light(x)}dp_{y,0} g x , 0 = y ∈ l i g h t ( x ) max d p y , 0
g x , 1 = max max y ∈ l i g h t ( x ) d p y , 1 , max y , z ∈ l i g h t ( x ) d p y , 0 + d p z , 0 g_{x,1}=\max\\{\max\limits_{y\in light(x)}dp_{y,1},\max\limits_{y,z\in light(x)}dp_{y,0}+dp_{z,0}\\} g x , 1 = max y ∈ l i g h t ( x ) max d p y , 1 , y , z ∈ l i g h t ( x ) max d p y , 0 + d p z , 0
于是
d p x , 0 = max g x , 0 + d p s o n , 0 + 1 dp_{x,0}=\max\\{g_{x,0}+dp_{son,0}\\}+1 d p x , 0 = max g x , 0 + d p s o n , 0 + 1
d p x , 1 = max d p s o n , 1 , g x , 1 , d p s o n , 0 + g x , 0 dp_{x,1}=\max\\{dp_{son,1},g_{x,1},dp_{son,0}+g_{x,0}\\} d p x , 1 = max d p s o n , 1 , g x , 1 , d p s o n , 0 + g x , 0
转移为
[ 1 − ∞ g x , 0 + 1 g x , 0 0 g x , 1 − ∞ − ∞ 0 ] [ d p s o n , 0 d p s o n , 1 0 ] = [ d p x , 0 d p x , 1 0 ] \begin{bmatrix}\begin{array}{c}1 & -\infty & g_{x,0}+1\\\\g_{x,0} & 0 &g_{x,1}\\\\-\infty & -\infty & 0\end{array}\end{bmatrix}\begin{bmatrix}\begin{array}{c}dp_{son,0}\\\\dp_{son,1}\\\\0\end{array}\end{bmatrix}=\begin{bmatrix}\begin{array}{c}dp_{x,0}\\\\dp_{x,1}\\\\0\end{array}\end{bmatrix} ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 g x , 0 − ∞ − ∞ 0 − ∞ g x , 0 + 1 g x , 1 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ d p s o n , 0 d p s o n , 1 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ = ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ d p x , 0 d p x , 1 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤
对于 g x , 0 / 1 g_{x,0/1} g x , 0 / 1 的维护需要开两个可删堆
一个记录 d p x , 0 dp_{x,0} d p x , 0 一个 d p x , 1 dp_{x,1} d p x , 1 ,都只维护轻儿子
g x , 0 g_{x,0} g x , 0 是第一个里最大的
g x , 1 g_{x,1} g x , 1 是第二个最大的或者第一个前两个数
复杂度O ( n log 2 n ) O(n\log^2n) O ( n log 2 n ) LCT可优化为 O ( n log n ) O(n\log n) O ( n log n )
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 #include <cstring> #include <iostream> #include <queue> #include <set> using namespace std;const int N = 70005 ;int n, m;int x[N], y[N];struct DelHeap { priority_queue<int > q, p; void clear () { while (!q.empty () && !p.empty () && q.top () == p.top ()) q.pop (), p.pop (); } void push (int x) { q.push (x); clear (); } void pop () { q.pop (); clear (); } void del (int x) { p.push (x), clear (); } int top () { clear (); return q.top (); } bool empty () { clear (); return q.empty (); } }; struct Edge { int v, l, r; int nxt; } edge[N * 2 ]; int head[N], ecnt;void add (int u, int v, int l, int r) { edge[++ecnt].v = v; edge[ecnt].l = l; edge[ecnt].r = r; edge[ecnt].nxt = head[u]; head[u] = ecnt; } namespace DDP {DelHeap q1[N], q2[N]; int leaf[N];int g0 (int x) { if (q1[x].empty ()) { return 0 ; } else { return q1[x].top (); } } int g1 (int x) { int ans = q2[x].empty () ? 0 : q2[x].top (); int sum = 0 , tmp; if (q1[x].empty ()) { return ans; } sum = q1[x].top (); q1[x].pop (); tmp = sum; if (!q1[x].empty ()) { sum += q1[x].top (); } q1[x].push (tmp); return max (sum, ans); } int top[N], fa[N], dep[N], son[N], siz[N], id[N], pos[N], tim;void dfs1 (int x, int f) { dep[x] = dep[f] + 1 ; fa[x] = f; siz[x] = 1 ; for (int i = head[x]; i; i = edge[i].nxt) { int v = edge[i].v; if (v == f) { continue ; } dfs1 (v, x); siz[x] += siz[v]; if (siz[v] > siz[son[x]]) { son[x] = v; } } } void dfs2 (int x, int topf) { top[x] = topf; id[x] = ++tim; pos[tim] = x; if (!son[x]) { leaf[x] = x; return ; } dfs2 (son[x], topf); leaf[x] = leaf[son[x]]; for (int i = head[x]; i; i = edge[i].nxt) { int v = edge[i].v; if (v == fa[x] || v == son[x]) { continue ; } dfs2 (v, v); } } struct Matrix { int a[3 ][3 ]; Matrix () { memset (a, 0 , sizeof (a)); } int *operator [](int x) { return a[x]; } Matrix operator *(Matrix b) { Matrix res = Matrix (); for (int i = 0 ; i < 3 ; i++) { for (int j = 0 ; j < 3 ; j++) { res[i][j] = -(1 << 31 ); } } for (int i = 0 ; i < 3 ; i++) { for (int k = 0 ; k < 3 ; k++) { for (int j = 0 ; j < 3 ; j++) { res[i][j] = max (res[i][j], a[i][k] + b[k][j]); } } } return res; } }; int w[N];namespace SegmentTree {const int INF = (1 << 30 );Matrix tr[N * 4 ]; void init (int rt, int x) { tr[rt].a[1 ][0 ] = g0 (x); tr[rt].a[1 ][1 ] = 0 ; tr[rt].a[1 ][2 ] = g1 (x); tr[rt].a[2 ][0 ] = -INF; tr[rt].a[2 ][1 ] = -INF; tr[rt].a[2 ][2 ] = 0 ; } void build (int rt, int l, int r) { if (l == r) { tr[rt][0 ][0 ] = -INF; tr[rt][0 ][1 ] = -INF; tr[rt][0 ][2 ] = 0 ; init (rt, pos[l]); return ; } int mid = (l + r) / 2 ; build (rt * 2 , l, mid); build (rt * 2 + 1 , mid + 1 , r); tr[rt] = tr[rt * 2 ] * tr[rt * 2 + 1 ]; } Matrix query (int rt, int l, int r, int L, int R) { if (L <= l && r <= R) { return tr[rt]; } int mid = (l + r) / 2 ; if (R <= mid) { return query (rt * 2 , l, mid, L, R); } if (L > mid) { return query (rt * 2 + 1 , mid + 1 , r, L, R); } return query (rt * 2 , l, mid, L, R) * query (rt * 2 + 1 , mid + 1 , r, L, R); } void update (int rt, int l, int r, int x) { if (l == r) { if (w[pos[l]]) { tr[rt][0 ][0 ] = 1 ; tr[rt][0 ][1 ] = -INF; tr[rt][0 ][2 ] = g0 (pos[l]) + 1 ; } else { tr[rt][0 ][0 ] = -INF; tr[rt][0 ][1 ] = -INF; tr[rt][0 ][2 ] = 0 ; } init (rt, pos[l]); return ; } int mid = (l + r) / 2 ; if (x <= mid) { update (rt * 2 , l, mid, x); } else { update (rt * 2 + 1 , mid + 1 , r, x); } tr[rt] = tr[rt * 2 ] * tr[rt * 2 + 1 ]; } } Matrix query (int x) { return SegmentTree::query (1 , 1 , n, id[x], id[leaf[x]]) * Matrix (); } void update (int x, int k) { w[x] = k; while (top[x] != 1 ) { Matrix tmp1 = query (top[x]); SegmentTree::update (1 , 1 , n, id[x]); Matrix tmp2 = query (top[x]); x = fa[top[x]]; q1[x].del (tmp1[0 ][0 ]); q1[x].push (tmp2[0 ][0 ]); q2[x].del (tmp1[1 ][0 ]); q2[x].push (tmp2[1 ][0 ]); } SegmentTree::update (1 , 1 , n, id[x]); } vector<int > p[N]; int ans[N];void solve () { dfs1 (1 , 0 ); dfs2 (1 , 1 ); SegmentTree::build (1 , 1 , n); for (int i = 1 ; i <= n; i++) { for (int j = head[i]; j; j = edge[j].nxt) { int v = edge[j].v; if (fa[i] == v) { p[edge[j].l].push_back (i); p[edge[j].r].push_back (-i); } } } for (int i = 1 ; i <= n; i++) { for (auto x : p[i]) { if (x > 0 ) { update (x, 1 ); } } ans[i] = query (1 )[1 ][0 ]; for (auto x : p[i]) { if (x < 0 ) { update (-x, 0 ); } } } while (m--) { int x; scanf ("%d" , &x); printf ("%d\n" , ans[x]); } } } int main () { cin >> n >> m; for (int i = 1 ; i < n; i++) { int u, v, l, r; scanf ("%d%d%d%d" , &u, &v, &l, &r); add (u, v, l, r); add (v, u, l, r); } DDP::solve (); }
T2 方舟系统
题面
考虑朴素 dp : d p i = min i < j ≤ n + 1 d p j + ∣ a i − ( j − i − 1 ) ∣ dp_i = \min\limits_{i<j\le n+1}\\{dp_j+|a_i-(j-i-1)|\\} d p i = i < j ≤ n + 1 min d p j + ∣ a i − ( j − i − 1 ) ∣
绝对值很难看,拆开
d p i = min i < j ≤ n + 1 { d p j − j + ( a i + i + 1 ) a i + i + 1 ≥ j d p j + j − ( a i + i + 1 ) a i + i + 1 < j dp_i\ =\min\limits_{i< j\le n+1}\begin{cases}
dp_j-j+(a_i+i+1)&a_i+i+1\ge j\\
dp_j+j-(a_i+i+1)&a_i+i+1< j
\end{cases} d p i = i < j ≤ n + 1 min { d p j − j + ( a i + i + 1 ) d p j + j − ( a i + i + 1 ) a i + i + 1 ≥ j a i + i + 1 < j
分别用树状数组/线段树维护两个区间最小值
复杂度 O ( n log n ) O(n\log n) O ( n log n )
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 #include <cstdio> #include <cstring> #include <iostream> using namespace std;const int N = 100010 ;int n, a[N];int dp[N];struct BIT { int c[N]; BIT () { memset (c, 0x3f , sizeof (c)); } int lowbit (int x) { return x & (-x); } void update (int pos, int v) { if (pos <= 0 ) { return ; } while (pos <= n) { c[pos] = min (c[pos], v); pos += lowbit (pos); } } int query (int pos) { if (pos <= 0 ) { return (1 << 30 ); } int res = (1 << 30 ); while (pos) { res = min (res, c[pos]); pos -= lowbit (pos); } return res; } } d1, d2; int main () { cin >> n; for (int i = 1 ; i <= n; i++) { cin >> a[i]; } dp[1 ] = a[1 ]; d1.update (n - a[1 ], a[1 ] + 1 ); d2.update (a[1 ] + 1 , -a[1 ] - 1 ); for (int i = 2 ; i <= n; i++) { int minv1 = d1.query (n - i + 1 ), minv2 = d2.query (i); dp[i] = min (minv1 - i, minv2 + i); d1.update (n - a[i] - i + 1 , dp[i - 1 ] + a[i] + i); d2.update (a[i] + i, dp[i - 1 ] - a[i] - i); } cout << dp[n]; return 0 ; }
T3 椅子
题面
[原题]([AT2645 ARC076D] Exhausted? - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) )
大力贪心
如果仅有 l i l_i l i 的限制显然很好做,贪心扫一遍
加上 r i r_i r i 后需要反悔,替换的时候必然是把 r i r_i r i 最小的扔出去,因为他能坐的位置更多
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 #include <algorithm> #include <iostream> #include <queue> using namespace std;const int N = 2e5 + 5 ;int n, m, ans, qp[N], cnt;struct Data { int l, r; } a[N]; bool cmp (const Data &A, const Data &B) { if (A.l != B.l) { return A.l < B.l; } return A.r > B.r; } priority_queue<int , vector<int >, greater<int >> q; int main () { cin >> n >> m; for (int i = 1 ; i <= n; i++) { cin >> a[i].l >> a[i].r; } sort (a + 1 , a + n + 1 , cmp); int h = 1 , t = m; for (int i = 1 ; i <= n; i++) { q.push (a[i].r); if (h <= t && h <= a[i].l) { h++; } else { qp[++cnt] = q.top (); q.pop (); } } sort (qp + 1 , qp + cnt + 1 ); for (int i = cnt; i >= 1 ; i--) { if (h <= t && qp[i] <= t) { t--; } else { ans++; } } cout << ans; }